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Abstract. We study the singular set in the Signorini problem for a divergence form elliptic op-
erator with Lipschitz coefficients, in the case of zero thin obstacle. The proofs are based on Weiss
and Monneau type monotonicity formulas implying homogeneity, nondegeneracy, uniqueness,
and continuous dependence of blowups at singular free boundary points.

Contents

1. Introduction 1
1.1. Structure of the paper 5
2. Preliminary material 6
3. Monotonicity of the frequency 7
4. Some growth lemmas 11
5. A one-parameter family of Weiss type monotonicity formulas 13
6. Almgren blowups and homogeneous blowups 14
7. Some uniformity matters 18
8. Singular set of the free boundary 21
9. A one-parameter family of Monneau type monotonicity formulas 22
10. Nondegeneracy 26
11. Structure of the singular set 31
References 33

1. Introduction

The aim of this paper is to study the structure and the regularity of the singular free bounda-

ry in the Signorini problem for a variable coefficient elliptic operator satisfying some minimal

assumptions on the coefficients. Our work generalizes the previous one by the first and second

named authors [GP] where the singular set was studied in the Signorini problem for the Lapla-

cian, both for zero and non-zero thin obstacles. In this paper we restrict the analysis to the

situation of a zero thin obstacle; the case of non-zero obstacle is technically more involved and

will be the object of a forthcoming investigation.

This paper is also a continuation of previous work (see [GS] and [GPS]), where the optimal

regularity of the solution of the Signorini problem for a variable coefficient elliptic operator and

the corresponding regularity of the regular part of the free boundary were studied.
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Given a bounded open set Ω ⊂ Rn, with n ≥ 2, and a self-adjoint, uniformly elliptic matrix-

valued function A(x) in Ω, the Signorini problem consists of minimizing the (generalized) Dirich-

let energy

(1.1) min
v∈K

∫
Ω
〈A(x)∇v,∇v〉,

where v ranges in the closed convex set

K = Kg,ϕ = {v ∈W 1,2(Ω) | v = g on ∂Ω \M, v ≥ ϕ on M}.

Here, M ⊂ ∂Ω is a codimension one manifold, g is a boundary datum and the function ϕ :

M → R represents the lower-dimensional, or thin, obstacle. In his seminal work [F] Fichera

proved that, under appropriate assumptions on the data, the minimization problem (1.1) admits

a unique solution u ∈ K, see also [T].

Throughout this paper the matrix-valued function x 7→ A(x) = [aij(x)] in (1.1) is assumed

to be uniformly elliptic, symmetric and with Lipschitz continuous entries treated by the first

and third named authors in [GS]. We note that allowing for variable coefficients is important

both for applications to elasticity and for the study of a Signorini problem with a non-flat thin

manifoldM for the Laplacian. Indeed, ifM is C1,1, for instance, then by a standard flattening

procedure one is led to analyzing a Signorini problem for a flat thin manifold where the operator

has Lipschitz continuous coefficients.

Henceforth, for x0 ∈ Rn and r > 0 we let Br(x0) = {x ∈ Rn | |x − x0| < r}, and Sr(x0) =

∂Br(x0). When x0 = 0, we will simply write Br and Sr, instead of Br(0) and Sr(0). When

needed, points in Rn will be indicated with x = (x′, xn), with x′ ∈ Rn−1. We also let B+
r =

{(x′, xn) ∈ Br | xn > 0}, B−r = {(x′, xn) ∈ Br | xn < 0}, and indicate with B′r = {(x′, 0) ∈
Rn | |x′| < r} the thin ball centered at 0 with radius r and with S′r = {(x′, 0) ∈ Rn | |x′| = r}
the thin sphere. In all integrals we will routinely omit indicating the relevant differential of

n-dimensional volume dx or (n− 1)-dimensional area dσ.

Since the problems investigated in this paper are of a local nature, for the problem (1.1)

above we assume hereafter that Ω = B+
1 , and that the thin manifold is flat and given by

M = B′1 ⊂ ∂B
+
1 . The set

Λϕ(u) = {x ∈ B′1 | u(x) = ϕ(x)}

is known as the coincidence set, and its boundary (in the relative topology of B′1)

Γϕ(u) = ∂B′1Λϕ(u)

is known as the free boundary.

Before we state our main results, and in order to provide the reader with some historical

perspective, we mention that in [GS] the first and third named authors established the following

optimal interior regularity of the unique solution u to (1.1).

Theorem 1.1 (Optimal regularity). Suppose that the coefficients of the matrix-valued function

A(x) be Lipschitz continuous. Let u be the solution of the Signorini problem (1.1), with the thin

obstacle ϕ ∈ C1,1(B′1), and let 0 ∈ Γϕ(u). Then u ∈ C1, 1
2 (B+

1/2 ∪B
′
1/2).
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We stress that the C1, 1
2 smoothness up to the thin manifold B′1 is best possible, as one can

see from the example of the function u(x) = <(x1 + i|xn|)3/2. When L = ∆, such u solves

the Signorini problem in B+
1 with B′1 as thin manifold, obstacle ϕ = 0, and the origin as a

free boundary point. Theorem 1.1 generalized to the case of Lipschitz variable coefficients the

groundbreaking 2004 result of Athanasopoulos and Caffarelli for the Laplacian, zero obstacle

and flat thin manifold, see [AC].

In the subsequent paper [GPS] we have established the C1,β
loc regularity of the regular part

Rϕ(u) of the free boundary. Roughly speaking, this is the collection of all free boundary points

where an appropriate generalization of the Almgren frequency takes its lowest possible value

κ = 3/2. The central result in [GPS] was the following.

Theorem 1.2. Under the hypothesis of Theorem 1.1, let x0 ∈ Rϕ(u). Then, there exists

η0 > 0, depending on x0, such that, after a possible rotation of coordinate axes in Rn−1, one has

B′η0(x0) ∩ Γϕ(u) ⊂ Rϕ(u), and

B′η0 ∩ Λϕ(u) = B′η0 ∩ {xn−1 ≤ g(x1, . . . , xn−2)}

for g ∈ C1,β(Rn−2) with a universal exponent β ∈ (0, 1).

In this paper we are interested in the structure and regularity of the so-called singular free

boundary Σϕ(u). This set is the collection of all points x0 ∈ Γϕ(u) such that the coincidence set

has vanishing (n− 1)-dimensional Hausdorff density at x0, i.e.,

(1.2) lim
r→0+

Hn−1(Λϕ(u) ∩B′r(x0))

Hn−1(B′r(x0))
= 0.

From now on in this paper we assume that the thin obstacle ϕ = 0, and we simply write

Γ(u),Λ(u),R(u) and Σ(u).

We emphasize that the singular set Σ(u) is by no means a small or negligible subset of the

free boundary. For instance, consider in R3 the harmonic polynomial

u(x) = x2
1x

2
2 −

(
x2

1 + x2
2

)
x2

3 +
1

3
x4

3.

This function solves the Signorini problem for the Laplacian in B+
1 ⊂ R3 with zero obstacle and

flat manifold M = {(x′, 0) | x′ ∈ R2}. On R2 × {0}, we have u(x1, x2, 0) = x2
1x

2
2 and therefore

the coincidence set Λ(u) as well as the free boundary Γ(u) consist of the union of the lines

R×{0}× {0} and {0}×R×{0}. Thus, all free boundary points are singular, i.e., Γ(u) = Σ(u).

Hereafter in this paper we assume that the following compatibility conditions on the coeffi-

cients be satisfied

(1.3) ain(x′, 0) = 0 in B′1, for i = 1, . . . , n− 1.

The hypothesis (1.3) essentially means that the conormal direction A(x′, 0)ν coincides with the

outer normal direction ν = −en on the flat portion B′1 of the boundary of B+
1 . As shown in

the Appendix B of [GS] there is no loss of generality in assuming (1.3) since such condition can

always be achieved by means of a sufficiently smooth diffeomorphism.
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For the purpose of this paper it will be expedient to extend the solution u of (1.1) to the

whole unit ball B1. To accomplish this we extend the coefficients aij and the boundary datum

g in the following way:

(i) g(x′, xn) = g(x′,−xn);

(ii) aij(x
′, xn) = aij(x

′,−xn) for i, j < n or i = j = n;

(iii) ain(x′, xn) = −ain(x′,−xn) for i < n.

Under these assumptions, if we extend u to the whole B1 as an even function with respect

to xn, then the extended function (which we continue to denote by u) satisfies the condition

Dnu(x′, 0) = 0 at every point (x′, 0) ∈ B′1 where Dnu(x′, 0) exists. We stress that such normal

derivative might not exist along the coincidence set, where D+
n u and D−n u might differ form each

other. The function u is the unique solution to the minimization problem in B1 similar to (1.1),

and it satisfies the following conditions:

Lu = div(A∇u) = 0 in B+
1 ∪B

−
1 ,(1.4)

u ≥ 0 in B′1,(1.5)

〈A∇u, ν+〉+ 〈A∇u, ν−〉 ≥ 0 in B′1,(1.6)

u(〈A∇u, ν+〉+ 〈A∇u, ν−〉) = 0 in B′1.(1.7) ∫
B1

〈A∇u,∇η〉 =

∫
B′1

(〈A∇u, ν+〉+ 〈A∇u, ν−〉)η, η ∈ C∞0 (B1).(1.8)

The conditions (1.5)–(1.7) are known as Signorini or complementarity conditions. We note

explicitly that (1.6) and (1.8) imply, in particular, that Lu ≤ 0 in B1, i.e., u is a supersolution

of L. The nonlinear condition (1.7) is known as Signorini’s ambiguous boundary condition.

We also note that, since on B′1 we have ν± = ∓en, and in view of the hypothesis (1.3) we

have A(x′, 0)en = ann(x′, 0)en, then on B′1 we have

〈A∇u, ν+〉 = −annD+
n u, 〈A∇u, ν−〉 = annD

−
n u,

where we have respectively denoted by D+
n u and D−n u the vertical limits in the xn direction

from within B+
1 and B−1 . This convention will be followed throughout the paper. We notice

that at points (x′, 0) ∈ B′1 where u is above the obstacle, i.e., where u(x′, 0) > 0, we have from

(1.7) that −D+
n u+D−n u = 0, and thus on such set Dnu exists, and equals zero, since u is even

in xn.

Definition 1.3. In this paper we denote by S the class of solutions of the normalized Signorini

problem (1.4)–(1.8).

Given u ∈ S, we denote by Γκ(u) the collection of those free boundary points x0 ∈ Γ(u)

where the generalized frequency Nx0(ux0 , 0
+) = κ, see Definition 8.1 below.

Let u ∈ S. We say that x0 ∈ Γ(u) is a singular point of the free boundary if

lim
r→0+

Hn−1(Λ(ux0) ∩B′r)
Hn−1(B′r)

= 0.

We denote with Σ(u) the subset of singular points of Γ(u). We also denote

Σκ(u) = Σ(u) ∩ Γκ(u).
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To state the main result of this paper we need to further classify the singular points. To this

end, we rely on the study of blowups of our solution and we define the dimension of Σκ(u) at a

singular point x0 ∈ Σκ(u) to be (see Definition 11.1)

dx0κ = dim
{
ξ ∈ Rn | 〈ξ,∇x′px0κ (x′, 0)〉 = 0, ∀x′ ∈ Rn−1

}
,

where px0κ is a nonzero homogeneous polynomial of degree κ which is the homogeneous blowup

of u at x0 (see Theorem 10.5). We then define

Σd
κ(u) := {x0 ∈ Σκ(u) | dx0κ = d}.

The following is the main result in this paper.

Theorem 1.4 (Structure of the singular set). Let u ∈ S. Then Γκ(u) = Σκ(u) for k = 2m,

m ∈ N. Moreover, every set Σd
κ(u), d ∈ {0, . . . , n − 2}, is contained in a countable union of

d-dimensional C1 manifolds.

The proof of Theorem 1.4 rests on several results and will ultimately be presented at the end of

the paper in Section 10. Loosely speaking, such proof follows the outline of the analogous result

in [GP] for the case of the Laplacian, but the treatment of Lipschitz variable coefficients poses

novel interesting challenges. One of the main results proved here is the “almost monotonicity”

of a one-parameter family of Weiss type functionals, see Theorem 5.3 below. One important

consequence of such result is the fact that the homogeneous blowup (see Definition 6.10) of a

function u ∈ S is a global solution of the Signorini problem which is homogeneous of degree

κ = N(u, 0+), see Proposition 6.12. Another central tool in the proof of Theorem 1.4 is Theo-

rem 9.3, a monotonicity formula for a one-parameter family of Monneau type functionals. Such

monotonicity formula leads to the crucial non-degeneracy Lemma 10.2 which, in turn, implies

the uniqueness of homogeneous blowups of u ∈ S and that such homogeneous blowup does not

vanish identically. From that point on, the proof of Theorem 1.4 follows along the lines of its

predecessor in [GP] for the Laplacian. In the case at hand some delicate uniformity matters still

need to be dealt with, which is done in Section 7.

1.1. Structure of the paper. The paper is organized as follows. In Section 2 we introduce

some preliminary material used throughout the paper. The monotonicity of an Almgren type

frequency function, N(u, r), is established in Section 3. Section 4 is devoted to some growth

lemmas. In Section 5 we prove one of the main results of this paper, a Weiss-type monotonicity

formula. In Section 6 we introduce the Almgren and homogeneous blowups of our solution.

Furthermore, we use the Almgren and Weiss-type monotonicity formulas to conclude that if

limr→0+N(r) = κ, both the Almgren and the homogeneous blowups of our solution are homo-

geneous of degree κ. In Section 7 we deal with the uniformity matters mentioned above stemming

from the fact that we have a variable coefficient matrix. In Section 8 we formally define the

singular set and prove a characterization of singular points. The second main technical result of

this paper, a Monneau-type monotonicity formula, is proved in Section 9. Finally, in Section 10

we use the Almgren and Monneau monotonicity formulas to derive a nondegeneracy property

of our solution, which finally allows us to prove the uniqueness of homogeneous blowups, and

that such blowup cannot vanish identically. We further prove the the continuos dependence of
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the blowups, which allows us to conclude the proof of the structure of the singular set, which is

done in Section 11.

2. Preliminary material

Given a matrix-valued function A(x) = [aij(x)] in B1, we consider the problem of minimizing

the generalized energy

(2.1) min
u∈K

∫
B1

〈A(x)∇u,∇u〉,

where u ranges in the closed convex set

K = {u ∈W 1,2(B1) | u = g on S1, u ≥ ϕ on B′1}.

Our assumptions on the matrix-valued function x→ A(x) = [aij(x)] in (2.1) are as follows:

(i) aij(x) = aji(x) for i, j = 1, . . . , n, and every x ∈ B1;

(ii) there exists λ > 0 such that for every x ∈ B1 and ξ ∈ Rn, one has

(2.2) λ|ξ|2 ≤ 〈A(x)ξ, ξ〉 ≤ λ−1|ξ|2;

(iii) the entries of A(x) = [aij(x)] are in W 1,∞(B1), i.e., one has for some Q > 0 and every

x, y ∈ B1

(2.3) ‖A(x)−A(y)‖ ≤ Q|x− y|.

The next lemma expresses a simple, yet important fact.

Lemma 2.1. Suppose A(0) = In. Then, for x 6= 0, one has

(2.4) L|x| = div(A(x)∇|x|) =
n− 1

|x|
+O (1) .

In particular, L|x| ∈ L1
loc(Rn).

Proof. With r(x) = |x| and B(x) = A(x)−A(0), we have

div(A(x)∇r) = ∆r + div(B(x)∇r) =
n− 1

r
+ div(B(x)∇r).

Now, if B(x) = [bij(x)], we have

div(B(x)∇r) = Di(bij)Djr + bijDijr.

From (2.3) and Rademacher’s theorem we have

Di(bij)Djr = O (1) , bijDijr =
bij
r

(
δij −

xixj
r2

)
= O (1) .

The desired conclusion thus follows. �

We next introduce the conformal factor

(2.5) µ(x) = 〈A(x)∇r(x),∇r(x)〉 =
〈A(x)x, x〉
|x|2

.

Let us observe explicitly that when A ≡ In we have µ ≡ 1. From the assumption (2.2) on A one

easily checks that

(2.6) λ ≤ µ(x) ≤ λ−1, x ∈ B1.
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We have the following simple lemma whose proof we omit since it is similar to that of

Lemma 2.1.

Lemma 2.2. Suppose that A(0) = In. Then, one has

(1) µ(0) = 1,

(2) |1− µ(x)| ≤ C|x|,
(3) |∇µ| ≤ C,

where C > 0 is universal.

We now introduce a vector field which plays a special role in what follows. With µ as in (2.5)

we define

(2.7) Z(x) = r(x)
A(x)∇r
µ(x)

=
A(x)x

µ(x)
.

A crucial property of Z is that, denoting by ν the outer unit normal to the sphere Sr, we have

(2.8) 〈Z, ν〉 = r
〈A(x)∇r,∇r〉

µ
≡ r, on Sr.

Another important fact concerning the vector field Z is contained in the following

Lemma 2.3. Suppose that A(0) = In. There exists a universal O(r) such that for every i, j =

1, . . . , n, one has

(2.9) DiZj = δij +O(r).

In particular, one has

(2.10) divZ = n+O(r).

Proof. From (2.3), (2.7), and from 2) and 3) of Lemma 2.2 we have for a universal O(r)

DiZj = Di

(
ajkxk
µ

)
=

(Diajk)xk
µ

+
ajkδki
µ
−
ajkxkDiµ

µ2

=
aij
µ

+O(r) =
δij
µ

+O(r) = δij + δij

(
1

µ
− 1

)
+O(r) = δij +O(r). �

3. Monotonicity of the frequency

The principal objective of this section is to establish the monotonicity Theorem 3.4 below.

We consider the variational solution u of (2.1) and assume that 0 ∈ Γ(u).

Definition 3.1. For r > 0 we define the height of u in the ball Br as

(3.1) H(u, r) =

∫
Sr

u2µ.

The Dirichlet integral of u in Br is defined by

D(u, r) =

∫
Br

〈A∇u,∇u〉.(3.2)

The frequency of u in Br is given by

(3.3) N(u, r) =
rD(u, r)

H(u, r)
.
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Henceforth, when the function u is fixed, we will write H(r), D(r) and N(r), instead of

H(u, r), D(u, r) and N(u, r). Before proceeding we make the observation (important for the

computations in this section) that, thanks to the results in [AU1, AU3], under the assumptions

of Theorem 1.2 above, we know that the weak solution u of (1.4)–(1.8) is in u ∈ C1,α
loc (B±1 ∪B′1).

Consequently, all derivatives are classical in the ensuing computations.

Let u be a solution of the thin obstacle problem (1.4)–(1.8) in B1 with ϕ ≡ 0. In what follows

we recall some important results from [GS], adapted to the case of zero obstacle. We have

(3.4) D(r) =

∫
Sr

u〈A∇u, ν〉.

Next, we recall the following first variation formula for the height:

H ′(r) = 2

∫
Sr

u〈A∇u,∇r〉+

∫
Sr

u2L|x|.

From this formula and from (2.4) in Lemma 2.1 above, we immediately obtain the following

result.

Proposition 3.2. Assume that the normalization hypothesis

(3.5) A(0) = In

be in place. Under this assumption for a.e. 0 < r < 1 one has

(3.6) H ′(r)− n− 1

r
H(r)− 2

∫
Sr

u〈A∇u, ν〉 = O (1)H(r).

Next, we establish a basic first variation formula for the energy.

Theorem 3.3. Suppose that the matrix A(x) satisfy the hypothesis (3.5) and that furthermore

(1.3) be in force. Then, for a.e. r ∈ (0, 1) one has

(3.7) D′(r) = 2

∫
Sr

〈A∇u, ν〉2

µ
+

(
n− 2

r
+O (1)

)
D(r).

Proof. From Theorem A.10 in [GS] we have

rD′(r) =

∫
Br

(divZ)〈A∇u,∇u〉+

∫
Br

(Zaij)DiuDju+ 2

∫
Sr

Zu〈A∇u, ν〉

− 2

∫
Sr

aij(DiZk)DjuDku+

∫
B′r

ann
µ

(anixi)((D
−
n u)2 − (D+

n u)2).

Thanks to the assumption (1.3) the integral on the thin ball B′r vanishes, and we obtain from

this identity

rD′(r) =

∫
Br

(divZ)〈A∇u,∇u〉+

∫
Br

(Zaij)DiuDju+ 2

∫
Sr

Zu〈A∇u, ν〉(3.8)

− 2

∫
Sr

aij(DiZk)DjuDku.

Using (2.10) in Lemma 2.3 we find∫
Br

(divZ)〈A∇u,∇u〉 = nD(r) +O(r)D(r).
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From (2.9) and (2.3) we obtain

−2

∫
Sr

aij(DiZk)DjuDku = −2

∫
Sr

aij (δik +O(r))DjuDku = −2D(r) +O(r)D(r).

Finally, the definition (2.7) and (2.3) give

Zaij =
〈A(x)x,∇(aij)〉

µ(x)
= O(r).

From this observation and the hypothesis (2.3) we thus have∫
Br

(Zaij)DiuDju = O(r)D(r).

In conclusion, we obtain from (3.8)

rD′(r) = (n− 2)D(r) +O(r)D(r) + 2

∫
Sr

Zu〈A∇u, ν〉.

Recalling that Zu = 〈A(x)∇u,∇r〉
µ r, this gives the desired conclusion. �

With these results in hands we can now prove the main result of this section.

Theorem 3.4 (Monotonicity of the adjusted frequency). Assume that the hypothesis of Theo-

rem 3.3 be satisfied. Then there exists a universal constant C > 0 such that the function

(3.9) Ñ(r) =: eCrN(r)

is monotone nondecreasing in (0, 1). In particular, the limit lim
r→0

Ñ(r) = Ñ(0+) exists. We

conclude that lim
r→0

N(r) = N(0+) also exists, and equals Ñ(0+).

Proof. From (3.3), Proposition 3.2 and Theorem 3.3 we have for a.e. r ∈ (0, 1)

d

dr
logN(r) =

D′(r)

D(r)
+

1

r
− H ′(r)

H(r)

= 2

∫
Sr

〈A∇u,ν〉2
µ

D(r)
+
n− 2

r
+O (1) +

1

r

− n− 1

r
− 2

∫
Sr
u〈A∇u, ν〉
H(r)

+O (1)

= 2

∫
Sr

〈A∇u,ν〉2
µ

D(r)
− 2

∫
Sr
u〈A∇u, ν〉
H(r)

+O (1)

≥ −C,

where in the last inequality C > 0 is a universal constant, and we have used the Cauchy-Schwarz

inequality and the identity (3.4) above. The latter inequality finally gives

d

dr
log Ñ(r) =

d

dr
logN(r) + C ≥ 0,

which implies the desired conclusion. �

Lemma 3.5 (Minimal homogeneity). Assume that the hypothesis of Theorem 3.3 be satisfied.

Then

N(0+) =
3

2
or N(0+) ≥ 2.
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Proof. With µ as in (2.5), we define

dr =

(
H(r)

rn−1

)1/2

=

(
1

rn−1

∫
Sr

u2µ

)1/2

, 0 < r < 1,

and, similarly to what was done in [ACS] in the study of the thin obstacle problem for the

Laplacian, we consider the non-homogeneous scalings of u,

(3.10) ur(x) =
u(rx)

dr
, x ∈ B 1

r
.

With Ar(x) = [arij(x)], where arij(x) = aij(rx), 0 < r < 1, we have∫
S1

u2
r(x)〈Ar(x)ν, ν〉dσ(x) =

r1−n

d2
r

∫
Sr

u2(y)〈A(y)ν, ν〉dσ(y) =
r1−n

d2
r

H(r) = 1.(3.11)

Moreover, ur is the (unique) minimizer of the Dirichlet integral

Jr(v) =

∫
B1/r

〈Ar(x)∇v,∇v〉dx,

over the closed convex set

Kr = {v ∈W 1,2(B1/r) | v = ψr on S1/r, u ≥ 0 on B′1/r},

where ψr(x) = ψ(rx)
dr

. Given a number 0 < ρ < 1/r, the appropriate (generalized) frequency

function for ur in Bρ is

(3.12) NLr(ur, ρ) = ρ

∫
Bρ
〈Ar∇ur,∇ur〉∫
Sρ
u2
r〈Arν, ν〉

, 0 < ρ <
1

r
.

We emphasize that the notation NLr(ur, ·) is now necessary in order to emphasize the fact that

the rescaled function ur in (3.10) is associated with the operator Lr = div(Ar∇). With this

notation the function N(u, r), defined in (3.3), will be denoted by NL(u, r). A crucial (and easy

to see) property of the frequency is the following scale invariance: for every 0 < ρ < 1
r , one has

NLr(ur, ρ) = NL(u, rρ).

From (3.11), the scale invariance remarked above and the monotonicity formula in Theo-

rem 3.4, we obtain

λ

∫
B1

|∇ur|2 ≤
∫
B1

〈Ar∇ur,∇ur〉 = NLr(ur, 1)(3.13)

= NL(u, r) ≤ eCNL(u, 1),

where C > 0 is the universal constant in Theorem 3.4. On the other hand, (3.11) above gives

(3.14) λ

∫
S1

u2
r ≤

∫
S1

u2
r〈Arν, ν〉 = 1.

From (3.13), (3.14), and the trace inequality, we see that

‖ur‖W 1,2(B1) ≤ C?, 0 < r < 1,

where C? > 0 depends only on n, λ and NL(u, 1). Hence, there exists a function u0 ∈W 1,2(B1)

such that for some subsequence rj → 0+,

(3.15) urj → u0 weakly in W 1,2(B1).
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Since the embedding W 1,2(B1, dx) ↪→ L2(S1, dσ) is compact, we have the strong convergence

(3.16) urj → u0 in L2(S1, dσ),

and also ur → u0 in C1
loc(B

±
1 ∪ B′1). We call the function u0 a blow-up of the solution u at the

free-boundary point 0 ∈ Γ(u). Moreover, by (3.11) and (3.16) we have

(3.17) 1 =

∫
S1

u2
rj 〈Arjx, x〉 −→j→∞

∫
S1

u2
0,

and we infer that u0 6≡ 0 on S1. It is easy to see that u0 satisfies the following

∆u0 = 0 in B+
1 ∪B

−
1 ,

u0 ≥ 0, ∂ν+u0 + ∂ν−u0 ≥ 0, u0(∂ν+u0 + ∂ν−u0) = 0 on B′1.

Therefore u0 is a normalized solution to the Signorini problem for ∆ in B1. In particular, by

the results in [AC] we infer that u0 ∈ C1, 1
2 (B±1 ∪B′1).

We now claim that if
∫
Sr
u2

0 = 0 for some 0 < r < 1, then u0 ≡ 0 in B1. Indeed, one can

easily show that
∫
Br
|∇u0|2 =

∫
Sr
u0〈∇u0, ν〉 = 0, so u0 ≡ c in Br. Since u0 = 0 on Sr, then

c = 0. By the unique continuation property of harmonic functions, we would have that u0 ≡ 0

in B±1 , hence in B1, which contradicts (3.17). Since for every 0 < r < 1 one has
∫
Sr
u2

0 > 0, and

urj → u0 in C1
loc(B

±
1 ∪B′1), we conclude that

(3.18) N∆(u0, r) = r

∫
Br
|∇u0|2∫
Sr
u2

0

= lim
rj→0+

NLrj
(urj , r) = lim

rj→0+
NL(u, rrj) = NL(u, 0+) := κ.

Equation (3.18) shows that the standard Almgren’s frequency function N∆(u0, ·) of u0 is constant

in (0, 1), and equals κ. By Theorem 1.4.1 in [GP] we conclude that u0 is homogeneous of degree

κ in B1.

Finally, again from (3.18) we conclude that

κ = NL(u, 0+) = lim
j→∞

rj

∫
Brj
|∇u0|2∫

Srj
u2

0

= lim
j→∞

N∆(u0, rj) = N∆(u0, 0
+).

Therefore, if u0 is a blowup of u at the origin as above, then u0 is a normalized solution of

the Signorini problem for ∆ in B1 homogeneous of degree κ = N∆(u0, 0
+). We can thus appeal

to Proposition 9.9 and Corollary 9.10 of [PSU] to reach the desired conclusion. �

4. Some growth lemmas

We begin this section by establishing a first basic consequence of Theorem 3.4.

Lemma 4.1. Assume that the hypothesis of Theorem 3.3 be satisfied, and suppose that N(0+) ≥
κ. Then, for r ∈ (0, 1) one has

(4.1) H(r) ≤ C̃rn−1+2κ,

where C̃ = eCH(1), with C as in (3.9) above.
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Proof. We return to the equation (3.6) above which, using (3.4), can be written

(4.2)
d

dr
log

H(r)

rn−1
= 2

N(r)

r
+O (1) ,

for a.e. 0 < r < 1. Since Ñ is monotone on (0, 1), by the hypothesis and Theorem 3.4 we have

(4.3) κ ≤ N(0+) = Ñ(0+) ≤ Ñ(r)

for every r ∈ (0, 1). We now fix r ∈ (0, 1) and integrate (4.2) between r and 1, obtaining

logH(1)− log
H(r)

rn−1
≥ 2

∫ 1

r
e−CtÑ(t)

dt

t
− C

≥ 2e−C
∫ 1

r
Ñ(t)

dt

t
− C ≥ e−C log

(
1

r

)2κ

− C,

where we have used (4.3). This gives

log
H(r)

rn−1
≤ logH(1) + log r2κ + C = log eCH(1)r2κ.

Exponentiating, we obtain the desired conclusion. �

Next we prove a growth estimate for u that will play an important role in the rest of the

paper.

Lemma 4.2. Under the hypothesis of Theorem 3.3, suppose that N(0+) ≥ κ. Then, there exists

a universal constant C > 0, depending also on κ, such that for every x ∈ B1/2 one has

(4.4) |u(x)| ≤ C |x|κ.

Proof. We begin by observing that integrating (4.1) in Lemma 4.1 and using (2.6) above, we

obtain for 0 < r < 1

(4.5)

∫
Br

u2 ≤ C1r
n+2κ,

where C1 depends on C̃, n and κ. Since Lu± ≥ 0 in B1, we can apply Theorem 8.17 of [GT] to

infer the existence of c = c(n, λ) > 0 such that if B(x, 2R) ⊂ B1, then

(4.6) sup
B(x,R)

u+ ≤ c R−n/2‖u+‖L2(B(x,2R)).

Pick now x ∈ B1/2, and let R = |x|/2. Clearly, B(x, 2R) ⊂ B4R ⊂ B1. Applying (4.6) we find

u+(x) ≤ c R−
n
2

(∫
B(x,2R)

(u+)2

) 1
2

≤ c R−
n
2

(∫
B4R

(u+)2

) 1
2

≤ c R−
n
2

(∫
B4R

u2

) 1
2

≤ CR−
n
2R

n+2κ
2 = C|x|κ,

where in the second to the last inequality we have used (4.5) above. Since a similar result holds

for u−, we have reached the desired conclusion. �

Lemma 4.3. Assume that the hypothesis of Theorem 3.3 be satisfied, and suppose that N(0+) ≥
κ. Then, there exists a universal constant C? > 0 such that for r ∈ (0, 1) one has

(4.7) D(r) ≤ C?rn−2+2κ.
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Proof. As a first observation we recall the estimate (4.5) above. The desired conclusion (4.7)

would thus follow at once from this observation, provided that the following Caccioppoli type

inequality hold

(4.8) D
(r

2

)
≤ C2

r2

∫
Br

u2,

for every 0 < r < 1 for a universal constant C2 > 0. To prove (4.8), let α ∈ C∞0 (Br) be such

that 0 ≤ α ≤ 1, α ≡ 1 on B r
2

and |∇α| ≤ C
r , and define h = α2u. By the Signorini conditions

(1.7) and (1.8) above, we have∫
Br

〈A∇u,∇h〉 =

∫
B′r

α2u(〈A∇u, ν+〉+ 〈A∇u, ν−〉)dHn−1 = 0.

This gives

0 =

∫
Br

α2〈A∇u,∇u〉+

∫
Br

2αu〈A∇u,∇α〉,

which implies∫
Br

α2〈A∇u,∇u〉 ≤ 2

(∫
Br

u2〈A∇α,∇α〉
) 1

2
(∫

Br

α2〈A∇u,∇u〉
) 1

2

.

In a standard fashion this gives (4.8). �

5. A one-parameter family of Weiss type monotonicity formulas

In this section we introduce a generalization of the Weiss type functional in [GP] and establish

a basic almost monotonicity property of the latter.

Definition 5.1. For κ > 0 we define

Wκ(r) = Wκ(r, u) =
1

rn−2+2κ

∫
Br

〈A∇u,∇u〉 − κ

rn−1+2κ

∫
Sr

u2µ

=
1

rn−2+2κ
D(r)− κ

rn−1+2κ
H(r) =

H(r)

rn−1+2κ
{N(r)− κ} .

Lemma 5.2. Suppose that the hypothesis of Theorem 3.3 be satisfied. If N(0+) ≥ κ, then

there exists C > 0 such that |Wκ(r)| ≤ C for every 0 < r < 1. If instead N(0+) = κ, then

Wκ(0+) = lim
r→0+

Wκ(r) exists and equals 0.

Proof. The former conclusion is a direct consequence of (4.1) in Lemma 4.1 and (4.7) in Lemma 4.3.

The latter follows immediately from the expression Wκ(r) = H(r)
rn−1+2κ {N(r)− κ}, and from the

fact that the quotient H(r)
rn−1+2κ is bounded in view of (4.1) in Lemma 4.1. �

The following “almost monotonicity” property of the functional Wκ plays a crucial role in our

further study.

Theorem 5.3. Assume that the hypothesis of Theorem 3.3 be satisfied, and suppose that N(0+) ≥
κ. Then, there exists a universal constant C > 0 such that

(5.1)
d

dr
(Wκ(r) + Cr) ≥ 2

rn+2κ

∫
Sr

(
〈A∇u, x〉
√
µ

− κ√µu
)2

.
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As a consequence of (5.1) the function r → Wκ(r) + Cr is monotone non-decreasing, and

therefore it has a limit as r → 0+. As a consequence, also the limit Wκ(0+) = lim
r→0+

Wκ(r) exists

and is finite.

Proof. From Definition 5.1 we have

W ′κ(r) =
1

rn−2+2κ

(
D′(r)− n− 2 + 2κ

r
D(r)− κ

r
H ′(r) +

κ(n− 1 + 2κ)

r2
H(r)

)
Using (3.6) in Proposition 3.2 and (3.7) in Theorem 3.3 we easily obtain

W ′κ(r) =
2

rn−2+2κ

{∫
Sr

(
〈A∇u, ν〉
√
µ

− κ

r
u
√
µ

)2

+O (1)D(r) +O (1)
H(r)

r

}
.

In view of (4.1) in Lemma 4.1 and (4.7) in Lemma 4.3, we conclude that

W ′κ(r) ≥ 2

rn+2κ

∫
Sr

(
〈A∇u, x〉
√
µ

− κ√µu
)2

− C,

for some universal constant C > 0. This estimate implies the sought for conclusion (5.1). In

particular, this implies that the function r → Wκ(r) + Cr has a limit as r → 0+. We conclude

that Wκ(0+) exists and is finite.

�

6. Almgren blowups and homogeneous blowups

In this section we consider a solution u ∈ S and, assuming that 0 ∈ Γ(u), we introduce two

families of scalings of u at zero, the Almgren scalings and the homogeneous scalings. We further

suppose that the hypothesis (1.3) be in force and that the matrix-valued function x → A(x)

satisfy the assumption (3.5) at zero. Then, we use Theorems 3.4 and 5.3 to establish the existence

of appropriate blowups of u associated with each of these two families of scalings. We begin by

defining the following quantity

(6.1) dr =

(
H(r)

rn−1

)1/2

,

where H(r) is as in (3.1) above. We notice that (4.1) of Lemma 4.1 above implies:

N(0+) ≥ κ =⇒ dr = O(rκ).

Definition 6.1. We define the Almgren scalings of u as follows:

(6.2) ũr(x) =
u(rx)

dr
, x ∈ B1/r.

The homogeneous scalings of u are defined in the following way:

(6.3) ur(x) =
u(rx)

rκ
, x ∈ B1/r.

In what follows we introduce the notation µr(x) = µ(rx), where µ is the conformal factor

defined in (2.5) above. We note explicitly that from (6.1) and (6.2) we obtain

H(r) =

∫
Sr

u2µ = rn−1

∫
S1

u(rx)2µ(rx) = rn−1d2
r

∫
S1

ũ2
rµr = H(r)

∫
S1

ũ2
rµr.
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This implies in particular that for every 0 < r < 1 one has

(6.4)

∫
S1

ũ2
rµr = 1.

This normalization is the main reason for introducing (6.2). We also observe in passing that

(6.3) gives trivially

∇u(rx) = rκ−1∇ur(x).

Lemma 6.2. Let u ∈ S and define Ar(x) = A(rx). Then, both the functions ũr and ur defined

in (6.2) and (6.3) are even in xn and solve the thin obstacle problem (1.4)–(1.8) in B1/r for the

operator Lr = div(Ar∇).

Proof. It is easy to verify that ur verifies (1.4)–(1.7) for the operator Lr. It thus suffices to prove

(1.8). Given η ∈ C∞0 (B1/r), a change of variable easily leads to

(6.5)

∫
B1/r

〈Ar∇ũr,∇η〉 = −2

∫
B′

1/r

(ann)rηD
+
n ũr,

and a similar equation holds if we replace ũr with ur. This establishes the lemma. �

Remark 6.3. Notice that when considering ũr or ur it is important to keep in mind that the

operator being considered is Lr = div(Ar∇). Therefore, to avoid confusion, the functions H(r),

D(r), N(r), Ñ(r) and Wκ(r) will be denoted by HLr(r), DLr(r), NLr(r), ÑLr(r) and WLr,κ(r).

If no operator is indicated, it is understood to be L.

We now want to analyze the asymptotic behavior of the Almgren scalings ũr.

Lemma 6.4. Let u ∈ S and suppose that 0 ∈ Γ(u). Then,

NLr(ũr, 1) = NL(u, r).

Proof. The result follows from the following direct computation:

NLr(ũr, 1) =

∫
B1
〈Ar∇ũr,∇ũr〉∫
S1
ũ2
rµr

=
r2
∫
B1
〈A(rx)∇u(rx),∇u(rx)〉∫
S1
u2(rx)µ(rx)

=
r
∫
Br
〈A∇u,∇u〉∫
Sr
u2µ

= NL(u, r). �

The next lemma combines Theorem 3.4 with Lemma 6.4 to obtain a uniform bound of the

Almgren scalings in W 1,2 norm.

Lemma 6.5. Let u ∈ S and 0 ∈ Γ(u). Assume that the hypothesis of Theorem 3.3 be satisfied.

Given rj → 0, the sequence {ũrj}j∈N is uniformly bounded in W 1,2(B1).

Proof. By (6.4) and Lemma 6.4 we have with r = rj∫
B1

|∇ũr|2 ≤ λ−1

∫
B1

〈Ar∇ũr,∇ũr〉 = λ−1DLr(ũr, 1) = λ−1NLr(ũr, 1) = λ−1NL(u, r)

= λ−1e−CrÑL(u, r) ≤ λ−1ÑL(u, 1),

where in the last inequality we have used the monotonicity of ÑL(u, ·). Moreover, by (2.5) and

(6.4) again, we have ∫
S1

ũ2
r ≤ λ−1

∫
S1

ũ2
rµr = λ−1.
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Combining these estimates with the trace inequality, valid for any function v ∈W 1,2(Br),

1

r

∫
Br

v2 ≤ C2(n)

(∫
Sr

v2 + r

∫
Br

|∇v|2
)
,

we conclude that

‖ũrj‖W 1,2(B1) <∞. �

Lemma 6.6. Let u ∈ S and suppose that 0 ∈ Γ(u). Assume that the hypothesis of Theorem 3.3

be satisfied. Given rj → 0, there exists a subsequence (which we will still denote by rj) and for

any α ∈ (0, 1/2) a function ũ0 ∈ C1,α
loc (Rn± ∪ Rn−1), such that ũrj → ũ0 in C1,α

loc (Rn± ∪ Rn−1).

Such ũ0 is a global solution of the Signorini problem (1.4)–(1.8) in Rn with A ≡ In, and we have

ũ0 6= 0.

Proof. We begin by observing that, as it was proved in [GS], we have u ∈ C1, 1
2

loc (B±1 ∪B′1) with

‖u‖
C1, 12 (B±

1/2
∪B′

1/2
)
≤ C(n, λ,Q, ‖u‖W 1,2(B1)).

Given rj ↘ 0, consider the sequence {ũrj}j∈N. By Lemma 6.5 such sequence is uniformly

bounded in W 1,2(B1). For any α ∈ (0, 1/2), by a standard diagonal process we obtain conver-

gence in C1,α
loc (Rn± ∪Rn−1) to a function ũ0 of a subsequence of the functions ũrj . Passing to the

limit in (6.5) we conclude that such ũ0 is a global solution to the Signorini problem (1.4)–(1.8)

with A ≡ In. Clearly, ũ0 is even in xn. Finally, since by (6.4) we have

1 =

∫
S1

ũ2
rµr →

∫
S1

ũ2
0,

we conclude that ũ0 6≡ 0. �

Definition 6.7. We call the function ũ0 in Lemma 6.6 a Almgren blowup of the function u ∈ S

at zero.

Proposition 6.8. Let u ∈ S, 0 ∈ Γ(u), and suppose that the hypothesis of Theorem 3.3 be

satisfied. Let ũ0 be a Almgren blowup of u at zero. If N(0+) = lim
r→0+

N(r) exists, then ũ0 is a

homogeneous function of degree κ = N(0+).

Proof. Let 0 < r <∞ be fixed and consider a sequence rj such that ũrj → ũ0 as in Lemma 6.6.

Since ũrj → ũ0 in C1,α
loc (Rn± ∪ Rn−1), we have NLrj

(ũrj , r) → N∆(ũ0, r). On the other hand, by

the fact that N(0+) = NL(u, 0+) exists, we have NL(u, rrj) → NL(u, 0+). Now, Lemma 6.4

gives NL(u, rrj) = NLrj
(ũrj , r). Passing to the limit as j →∞ in this equality, we infer

N∆(ũ0, r) ≡ NL(u, 0+), 0 < r <∞.

Since Almgren’s frequency is constant and equal to κ if and only if the relevant function is

homogeneous of degree κ, see [ACS], we conclude that ũ0 must be homogeneous of degree

κ = N(0+). �

We next analyze the asymptotic behavior of the homogeneous scalings (6.3).
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Lemma 6.9. Let u ∈ S, 0 ∈ Γ(u), and assume that the hypothesis of Theorem 3.3 be satisfied.

Suppose that N(0+) ≥ κ. Given rj → 0, there exists a subsequence (which we will still denote

by rj) and for any α ∈ (0, 1/2) a function u0 ∈ C1,α
loc (Rn± ∪ Rn−1), such that urj → u0 in

C1,α
loc (Rn± ∪ Rn−1). Such u0 is a global solution of the Signorini problem (1.4)–(1.8) in Rn with

A ≡ In.

Proof. We begin by observing that, under the given hypothesis, the conclusion of Lemma 4.1 is

in force. Consider the family {urj}j∈N. By (4.5) we have

∫
B1

u2
rj = r−2κ

j

∫
B1

u(rjx)2 = r
−(n+2κ)
j

∫
Brj

u2 ≤ C1.

Similarly, using (4.7) we find

∫
B1

|∇urj |2 = r2−2κ
j

∫
B1

|∇u(rjx)|2 = r−n+2−2κ
j

∫
Brj

|∇u|2 ≤ λ−1C?.

We conclude that {urj}j∈N is uniformly bounded in W 1,2(B1). Moreover, as proved in [GS],

u ∈ C1, 1
2

loc (B±1 ∪B′1) with

‖u‖
C1, 12 (B±

1/2
∪B′

1/2
)
≤ C(n, λ,Q, ‖u‖W 1,2(B1)).

By a standard diagonal process, for any α ∈ (0, 1/2), we obtain convergence in C1,α
loc (Rn±∪Rn−1)

of a subsequence of the functions urj to a function u0. Passing to the limit in (6.5), which also

holds for ur, we conclude that such u0 is a global solution to the Signorini problem (1.4)–(1.8)

with A ≡ In. Clearly, u0 is even in xn. �

Definition 6.10. We call the function u0 in Lemma 6.9 a homogeneous blowup of u ∈ S at

zero.

Remark 6.11. We note that, unlike what happens for the Almgren blowups in Lemma 6.6, it is

not guaranteed that a homogeneous blowup be nonzero.

The name homogeneous blowup is particularly justified by the following result that rests

crucially on Theorem 5.3.

Proposition 6.12. Let u0 be a homogeneous blowup as in Lemma 6.9. Then, u0 is a homoge-

neous function of degree κ = N(0+).
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Proof. Let 0 < r < R. For a fixed rj we integrate (5.1) in Theorem 5.3 over the interval

[rjr, rjR], obtaining:

Wκ(rjR, u)−Wκ(rjr, u) + Crj(R− r) ≥ 2

∫ rjR

rjr

1

tn+2κ

∫
St

(
〈A∇u, x〉
√
µ

− κ√µu
)2

dσdt

= 2rj

∫ R

r

1

(rjs)n+2κ

∫
Srjs

(
〈A∇u, x〉
√
µ

− κ√µu
)2

dσds

= 2rnj

∫ R

r

1

(rjs)n+2κ

∫
Ss

(
〈A(rjy)∇u(rjy), rjy〉√

µ(rjy)
− κ
√
µ(rjy)u(rjy)

)2

dσds

=
2

r2κ
j

∫ R

r

1

sn+2κ

∫
Ss

〈Arj (y)∇urj (y), y〉√
µrj (y)

rκj − κ
√
µrj (y)urj (y)rκj

2

= 2

∫
BR\Br

1

|y|n+2κ

〈Arj (y)∇urj (y), y〉√
µrj (y)

− κ
√
µrj (y)urj (y)

2

.

We want to take the limit as rj → 0 in the above inequality. By the second part of Theorem 5.3

we know that Wκ(0+) exists (in fact, since we are assuming that N(0+) = κ, by the second part

of Lemma 5.2 we know that Wκ(0+) = 0). Now, the left-hand side of the above inequality goes

to zero. Since A(0) = In, by (2) of Lemma 2.2 we know that µrj (x) → 1 locally uniformly in

x. From this, and the fact that urj converges to u0 in C1,α
loc (Rn± ∪ Rn−1), letting j → ∞ in the

above inequality we infer that the latter converges to

0 ≥ 2

∫
BR\Br

1

|y|n+2κ
(〈∇u0, y〉 − κu0)2 .

By the arbitrariness of 0 < r < R < ∞ we conclude that u0 is homogeneous of degree κ in

Rn. �

7. Some uniformity matters

We note that in all results in the above Sections 3–6 we have used in a crucial way the

assumption that at the fixed free boundary point 0 ∈ Γ(u) the normalization A(0) = In be in

force. Since of course this is not necessarily the case at a generic point x0 ∈ Γ(u), we next

discuss a change of coordinates which will allow us to deal with this problem while at the same

time keeping some important matters of uniformity under control.

Given the ball B1 ⊂ Rn and a function u ∈ S, suppose that A(x0) is not the identity matrix

In for a given point x0 ∈ Γ(u) ⊂ B′1. We consider the affine transformation Tx0 : Rn → Rn

defined by

(7.1) Tx0(x) = A(x0)−1/2(x− x0).

Tx0 is a bijection from B1 onto its image Ωx0 = Tx0(B1), and we clearly have Tx0(x0) = 0 ∈ Ωx0 .

We have the following

Lemma 7.1. The transformation Tx0 maps the thin manifold into itself, i.e.,

Tx0(B′1) ⊂M, where M = {(x′, 0) | x′ ∈ Rn−1}.
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Proof. It suffices to show that a normal field to Tx0(B′1) is constant and parallel to en. Now, if

η̃(y) denotes a normal field on Tx0(B′1), it is easy to recognize that for y ∈ Tx0(B′1) we have

η̃(y) = A(x0)1/2η(T−1
x0 (y)),

where η(x) is a normal in x ∈ B′1. Since we can take η(x) ≡ en on B′1, we conclude that

η̃(y) ≡ A(x0)1/2en, y ∈ Tx0(B′1)

is a normal field on Tx0(B′1). Hence, η̃(y) is constant on Tx0(B′1). Now the fact that A(x0) has

the form (1.3) implies that

A(x0)en = ann(x0)en, A(x0)ei =


a1i(x0)
a2i(x0)
· · ·

an−1,i(x0)
0

 , i = 1, . . . , n− 1.

Therefore, en is an eigenvector of A(x0) with corresponding (positive) eigenvalue λn(x0) =

ann(x0). Since the eigenvalues of A(x0)1/2 are the square roots of those of A(x0), and the

eigenvectors of A(x0)1/2 are the same as those of A(x0), we conclude that
√
λn(x0) =

√
ann(x0)

is an eigenvalue of A(x0)1/2, and in fact η̃(y) = A(x0)1/2en =
√
ann(x0)en. We conclude that

Tx0(B′1) ⊂ B′1. �

For a given function u : B1 → R, and a given point x0 ∈ B′1, we consider the function

ux0 : Ωx0 → R defined by

(7.2) ux0(y) = u ◦ T−1
x0 (y) = u(x0 +A1/2(x0)y), y ∈ Ωx0 .

For a given matrix-valued function A defined in B1 we consider Ax0 defined in Ωx0 as follows

(7.3) Ax0(y) = A−1/2(x0)A(x0 +A1/2(x0)y)A−1/2(x0).

Lemma 7.2. Suppose that u ∈ S, and that x0 ∈ Γ(u). Let R0 = dist(x0, S1). Then, the

function ux0 is even in xn and satisfies the Signorini conditions (1.4)–(1.8) with respect to the

matrix Ax0 in the ball B√λR0
(0). In particular, one has in B+√

λR0
(0) ∪B−√

λR0
(0)

(7.4) Lx0ux0 := div(Ax0(y)∇ux0) = 0.

Furthermore, the matrix Ax0 satisfies

(7.5) λ2|ξ|2 ≤ 〈Ax0(y)ξ, ξ〉 ≤ λ−2|ξ|2,

for any y ∈ B√λR0
(0), and any ξ ∈ Rn. Also, it satisfies (2.3). Finally, the entries of Ax0

satisfy conditions (1.3), and moreover Ax0(0) = In.

Proof. In a standard way one verifies that if u is a weak solution to Lu = div(A(x)∇u) = 0 in

B±1 , then ux0 is a weak solution in Ω±x0 = Tx0(B±1 ) to

(7.6) Lx0ux0 = div(Ax0(y)∇ux0) = 0.

Notice that Tx0(x0) = 0 ∈ Ωx0 , and by construction we have Ax0(0) = In.

We note explicitly that in passing from the matrix A in B1 to the matrix Ax0 in Ωx0 the

uniform bounds on the ellipticity change from λ to λ2. We have in fact that (7.5) holds for
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every y ∈ Ωx0 and any ξ ∈ Rn. Moreover, hypothesis (2.2) implies that for every x0 ∈ B′1 and

x, p ∈ Rn

λ1/2|x− p| ≤ |A1/2(x0)(x− p)| ≤ λ−1/2|x− p|,(7.7)

λ1/2|x− p| ≤ |A−1/2(x0)(x− p)| ≤ λ−1/2|x− p|.

We can rewrite the second inequality in (7.7) in the following way

λ1/2|x− p| ≤ |Tx0(x)− Tx0(p)| ≤ λ−1/2|x− p|,(7.8)

or, equivalently,

(7.9) B√λr(Tx0(p)) ⊂ Tx0(Br(p)) ⊂ B r√
λ

(Tx0(p)),

for any p ∈ Rn and r > 0. In particular, if we take p = x0, and recalling that Tx0(x0) = 0, we

have from (7.9)

(7.10) B√λr(0) ⊂ Tx0(Br(x0)) ⊂ B r√
λ

(0).

If we take R0 = dist(x0, S1), we conclude from (7.10) that the function ux0 satisfies the equation

(7.4) in the half-balls B±√
λR0

(0).

Finally, we note that the matrix-valued function y → Ax0(y) satisfies in Ωx0 an assumption

similar to (2.3). In fact, from (7.7) and (2.3) we have

(7.11) ‖Ax0(y)−Ax0(y′)‖ ≤ λ−3/2Q|y − y′|, y, y′ ∈ Ωx0 .

Given any x0 ∈ Γ(u), we can now move x0 to the origin by considering the function ux0 :

Ωx0 → R defined as in (7.2). From what we have shown ux0 satisfies (7.4) in the half balls

B±√
λR0

(0). If we denote by Γ(ux0) the free boundary of ux0 in the ball B√λR0
(0), then we have

Γ(ux0) ⊂ B′√
λR0

(0) = {(y′, 0) ∈ Rn | |y′| <
√
λR0}.

Moreover, we claim that ux0(y′, yn) is even in yn in the ball B√λR0
(0), i.e.,

(7.12) ux0(y′,−yn) = ux0(y′, yn).

This can be easily seen as follows. We write (y′, yn) = (y′, 0) + ynen. Then,

ux0(y′,−yn) = u(x0 +A1/2(x0)(y′, 0)− ynA1/2(x0)en) = u(T−1
x0 (y′, 0)−

√
ann(x0)ynen).

Since x0 = (x′0, 0), and we have shown that Tx0 , and therefore T−1
x0 , maps M onto M , from the

evenness of u in xn we conclude that

ux0(y′,−yn) = u(T−1
x0 (y′, 0)−

√
ann(x0)ynen) = u(T−1

x0 (y′, 0) +
√
ann(x0)ynen) = ux0(y′, yn).

This proves (7.12). The proof of the remaining part of the lemma is left as an exercise to the

reader. �

Having dealt with these matters of uniformity, we introduce the Almgren scalings and the

homogeneous scalings at an arbitrary point x0 ∈ Γ(u).

Definition 7.3. Let u ∈ S and suppose that x0 ∈ Γ(u). With ux0 as in (7.2) above, we define

(7.13) ũx0,r(x) =
ux0(rx)

dx0,r
, where dx0,r =

(
1

rn−1
Hx0(r)

)1/2

.
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The homogeneous scalings of u at x0 are defined in the following way:

(7.14) ux0,r(x) =
ux0(rx)

rκ
.

When x0 = 0, we simply write ũr and ur.

Notice that, if we let

µx0,r(x) =
〈Ax0(rx)x, x〉

|x|2
,

then we have the following normalization:∫
S1

ũ2
x0,r µx0,r = 1.

8. Singular set of the free boundary

Let u ∈ S. In this section we introduce those free boundary points of u that constitute the

main focus of this paper and prove a characterization result.

Definition 8.1. Let u ∈ S and let κ ≥ 3/2. We say that x0 ∈ Γκ(u) if x0 ∈ Γ(u) and

Nx0(ux0 , 0+) = κ, where Nx0(ux0 , r) := NLx0
(ux0 , r).

Definition 8.2 (Singular points). Let u ∈ S. We say that x0 ∈ Γ(u) is a singular point of the

free boundary if

lim
r→0+

Hn−1(Λ(ux0) ∩B′r)
Hn−1(B′r)

= 0.

We denote with Σ(u) the subset of singular points of Γ(u). We also denote

Σκ(u) = Σ(u) ∩ Γκ(u).

Notice that in terms of the scalings ũx0,r, the condition 0 ∈ Σ(u) is equivalent to

(8.1) lim
r→0+

Hn−1(Λ(ũx0,r) ∩B′1) = 0.

Before stating the next result we introduce a definition.

Definition 8.3. In what follows we will indicate with P+
κ (Rn) the class of all nonzero homoge-

neous polynomials pκ of degree κ in Rn, such that:

∆pκ = 0, pκ(x′, 0) ≥ 0, pκ(x′,−xn) = pκ(x′, xn).

Theorem 8.4 (Characterization of singular points). Let u ∈ S with 0 ∈ Γκ(u) for κ > 3/2.

The following statements are equivalent:

(i) 0 ∈ Σκ(u).

(ii) Any Almgren blowup of u at the origin (as in Lemma 6.6), ũ0, is a nonzero homogeneous

polynomial pκ ∈ P+
κ (Rn).

(iii) κ = 2m, for some m ∈ N.

Proof. It follows as the proof of Theorem 1.3.2 of [GP], with minor changes.

(i) ⇒ (ii) Step 1: ũ0 is harmonic. By (6.5) for 0 < r < 1 and any η ∈ C∞0 (B1) we find

(8.2)

∫
B1

〈Ar∇ũr,∇η〉 = −2

∫
B′1∩Λ(ũr)

(ann)rD
+
n ũrη.
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By Lemma 6.6 |∇ũr| are uniformly bounded in B1. This fact and (8.1) allow to conclude that

(8.3) lim
r→0+

∫
B′1∩Λ(ũr)

(ann)rD
+
n ũrη = 0.

On the other hand, since A(0) = In, we infer that∫
B1

〈Ar∇ũr,∇η〉 →
∫
B1

〈∇ũ0,∇η〉.

We conclude that ũ0 is weakly harmonic in B1, and therefore by the Caccioppoli-Weyl lemma

it is a classical harmonic function in B1.

Step 2: ũ0 is a polynomial. Since by Proposition 6.8 ũ0 is homogeneous of degree κ, it can

be extended to all of Rn and such extension will be harmonic. By homogeneity, ũ0 has at

most polynomial growth at infinity. Using Louville’s Theorem, we conclude that ũ0 must be a

polynomial of degree κ.

The implications (ii) ⇒ (iii), (iii) ⇒ (ii), and (ii) ⇒ (i) follow as in Theorem 1.3. in [GP],

and we refer to that source. �

Similarly, we can derive more information on homogeneous blowups around singular points.

Lemma 8.5. Let u ∈ S with 0 ∈ Σκ(u). Then any homogeneous blowup of u at the origin (as

in Lemma 6.9) is a homogeneous polynomial pκ ∈ P+
κ (Rn) ∪ {0}.

Proof. We notice that (8.2) still holds with ur instead of ũr. Moreover, as shown in the proof of

Lemma 6.9, {ur}r<1 is uniformly bounded in W 1,2(B1), and by assumption

lim
r→0+

Hn−1(Λ(ur) ∩B′1) = 0.

The proof then follows exactly as in (i) ⇒ (ii) in Theorem 8.4. �

Remark 8.6. Notice that we still cannot conclude that pκ is nonzero. This will follow from

Lemma 10.3 below.

9. A one-parameter family of Monneau type monotonicity formulas

The objective of this section is to establish a generalization of the one-parameter Monneau

type monotonicity formulas that were obtained in [GP] for solutions of the Signorini problem

for the Laplacian. Since our main result will appear as a perturbation of the constant coefficient

one, in what follows we will consider harmonic polynomials pκ in Rn which are homogeneous of

degree κ and such that pκ(x′, 0) ≥ 0. For a function p we define

Ψp(r) =
1

rn−2+2κ

∫
Br

|∇p|2 − κ

rn−1+2κ

∫
Sr

p2.

Lemma 9.1. For any harmonic polynomial pκ which is homogeneous of degree κ, we have for

every r > 0

Ψpκ(r) = 0.
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Proof. Since ∆pκ = 0 we have ∆p2
κ = 2|∇pκ|2. Integrating by parts and using the fact that pκ

is κ homogeneous, we thus find

(9.1) Ψpκ(r) =
1

rn−1+2κ

∫
Sr

pκ〈∇pκ, ν〉 −
κ

rn−1+2κ

∫
Sr

p2
κ = 0.

�

Definition 9.2. Let u ∈ S and let 0 ∈ Γκ(u). For any pκ ∈ P+
κ (Rn) we define

Mκ(u, pκ, r) = Mκ(r) =
1

rn−1+2κ

∫
Sr

(u− pκ)2µ,

where µ is the conformal factor introduced in (2.5).

The following theorem is the main result of this section.

Theorem 9.3 (Monneau type monotonicity formula). Let u ∈ S and assume that 0 ∈ Γκ(u).

Suppose that the hypothesis of Theorem 3.3 be satisfied. Then there exists a universal constant

C̃ > 0 such that

(9.2)
d

dr

(
Mκ(r) + C̃r

)
≥ 2Wκ(r)

r
.

Proof. Let w = u − pκ, so that Mκ(r) = 1
rn−1+2κ

∫
Sr
w2µ. Then, as in Lemma 4.4 in [GS], we

find

M ′κ(r) = −n− 1 + 2κ

rn+2κ

∫
Sr

w2µ+
1

rn−1+2κ

[
2

∫
Sr

w〈A∇w,∇r〉+

∫
Sr

w2L|x|
]
.

At this point we invoke (2.4) in Lemma 2.1, (2) in Lemma 2.2 and (4.4) in Lemma 4.2 to obtain

from the latter equation

(9.3) M ′κ(r) =
2

rn+2κ

∫
Sr

w〈A∇w, x〉 − 2κ

rn+2κ

∫
Sr

w2µ+O (1) .

We next consider

Wκ(r, u) = Wκ(r) =
1

rn−2+2κ

∫
Br

〈A∇u,∇u〉 − κ

rn−1+2κ

∫
Sr

u2µ,

see Definition 5.1. Using (9.1), and recalling that we are assuming A(0) = In, we can write

Wκ(r) = Wκ(r)−Ψpκ(r)

=
1

rn−2+2κ

∫
Br

〈A∇u,∇u〉 − κ

rn−1+2κ

∫
Sr

u2µ− 1

rn−2+2κ

∫
Br

|∇pκ|2 +
κ

rn−1+2κ

∫
Sr

p2
κ

=
1

rn−2+2κ

∫
Br

(〈A∇u,∇u〉 − 〈A∇pκ,∇pκ〉) +
1

rn−2+2κ

∫
Br

〈(A(x)−A(0))∇pκ,∇pκ〉

− κ

rn−1+2κ

∫
Sr

(u2 − p2
κ)µ+

κ

rn−1+2κ

∫
Sr

p2
κ(1− µ).

Since pκ is homogeneous of degree κ, we have

1

rn−2+2κ

∫
Br

〈(A(x)−A(0))∇pκ,∇pκ〉 = O(r).

On the other hand, the estimate (2) in Lemma 2.2 and the homogeneity of pκ again give

κ

rn−1+2κ

∫
Sr

p2
κ(1− µ) = O(r).
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We conclude that

Wκ(r) =
1

rn−2+2κ

∫
Br

(〈A∇u,∇u〉 − 〈A∇pκ,∇pκ〉)

− κ

rn−1+2κ

∫
Sr

(u2 − p2
κ)µ+O(r).

It is now a simple computation to verify that the difference of the two integrals in the right-hand

side of the latter equality can be expressed in the following form

Wκ(r) =
1

rn−2+2κ

∫
Br

(〈A∇w,∇w〉+ 2〈A∇w,∇pκ〉)(9.4)

− κ

rn−1+2κ

∫
Sr

(w2 + 2wpκ)µ+O(r).

Using the divergence theorem we find∫
Br

〈A∇w,∇pκ〉 =

∫
Sr

w〈A∇pκ, ν〉 −
∫
Br

wLpκ.

Using the harmonicity of pκ and letting B(x) = A(x)−A(0), we have

Lpκ = div(A(x)∇pκ) = ∆pk + div(B(x)∇pκ) = Di(bij)Djpκ + bijDijpκ.

By (2.3), and by the fact that pκ is homogeneous of degree κ, we conclude that for a.e. x ∈ Br
we have

Lpκ(x) = O(|x|)|x|κ−2.

This fact and (4.4) in Lemma 4.2 allow to conclude that

(9.5)

∫
Br

wLpκ = O(rn−1+2κ).

Substituting (9.5) into (9.4), we find

Wκ(r) =
1

rn−2+2κ

∫
Br

〈A∇w,∇w〉+
2

rn−1+2κ

∫
Sr

w〈A∇pκ, x〉(9.6)

− κ

rn−1+2κ

∫
Sr

(w2 + 2wpκ)µ+O(r).

We now integrate by parts in the first integral in the right-hand side of (9.6). Using the properties

of pκ and the Signorini conditions (1.4)–(1.8), we obtain

1

rn−2+2κ

∫
Br

〈A∇w,∇w〉 =
1

rn−2+2κ

∫
Br

wLpκ +
1

rn−2+2κ

∫
Sr

w〈A∇w, ν〉+

+
1

rn−2+2κ

∫
B′r

w(〈A∇w, ν+〉+ 〈A∇w, ν−〉)

= − 1

rn−2+2κ

∫
B′r

pκ(〈A∇u, ν+〉+ 〈A∇u, ν−〉)

+
1

rn−2+2κ

∫
Sr

w〈A∇w, ν〉+O(r),

where in the last equality we have used (9.5) again. Recalling now (1.6) and the fact that

pκ(x′, 0) ≥ 0, we have

− 1

rn−2+2κ

∫
B′r

pκ(〈A∇u, ν+〉+ 〈A∇u, ν−〉) ≤ 0.
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In conclusion,

1

rn−2+2κ

∫
Br

〈A∇w,∇w〉 ≤ 1

rn−1+2κ

∫
Sr

w〈A∇w, x〉+O(r).

Substituting this in (9.6) above and recalling (9.3), we conclude

Wκ(r) ≤ 1

rn−1+2κ

∫
Sr

w〈A∇w, x〉+
2

rn−1+2κ

∫
Sr

w〈A∇pκ, x〉

− κ

rn−1+2κ

∫
Sr

(w2 + 2wpκ)µ+O(r)

=
rM ′κ(r)

2
+

κ

rn−1+2κ

∫
Sr

w2µ+
2

rn−1+2κ

∫
Sr

w〈A∇pκ, x〉

− κ

rn−1+2κ

∫
Sr

(w2 + 2wpκ)µ+O(r)

=
rM ′κ(r)

2
+

2

rn−1+2κ

∫
Sr

w〈A∇pκ, x〉

− 2κ

rn−1+2κ

∫
Sr

wpκµ+O(r).

Finally, since 〈∇pκ, x〉 − κpκ ≡ 0, using again the fact that A(0) = In, (2.3), (2) in Lemma 2.2

and the estimate (4.4) in Lemma 4.2, one verifies that

2

rn−1+2κ

∫
Sr

w〈A∇pκ, x〉 −
2κ

rn−1+2κ

∫
Sr

wpκµ = O(r).

In conclusion, we have proved that

Wκ(r) ≤ rM ′κ(r)

2
+O(r).

This estimate gives, for a universal constant C̃ > 0 (depending also on κ)

M ′κ(r) ≥ 2Wκ(r)

r
− C̃.

This implies that
d

dr

(
Mκ(r) + C̃r

)
≥ 2Wκ(r)

r
,

thus proving the theorem. �

We now draw an important consequence of Theorem 9.3.

Corollary 9.4. Under the assumptions of Theorem 9.3 we have

(9.7)
d

dr
(Mκ(r) + C?r) ≥ 0,

where C? is a universal constant. In particular, the limit Mκ(0+) = lim
r→0

Mκ(r) exists.

Proof. By the second part of Lemma 5.2 the assumption 0 ∈ Γκ(u) implies that Wκ(0+) = 0.

By Theorem 5.3 there exists a constant C > 0 such that Wκ(r)+Cr is monotone nondecreasing.

We infer that Wκ(r) +Cr ≥Wκ(0+) = 0. This implies Wκ(r) ≥ −Cr. Combining this estimate

with (9.2) in Theorem 9.3, we obtain

d

dr

(
Mκ(r) + C̃r

)
≥ −2C.

The desired conclusion now immediately follows. �
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10. Nondegeneracy

In this section we use the Almgren and Monneau monotonicity formulas to prove a non-

degeneracy property, Lemma 10.2 below. This in turn allows us to prove the uniqueness of

homogeneous blowups, and that such blowup cannot vanish identically. We further prove the

the continuos dependence of the blowups. We start with a lower bound on H(r) which is used

to prove the nondegeneracy property.

Lemma 10.1. Let u ∈ S with 0 ∈ Γκ(u). Then

(10.1) r
d

dr
logH(r)− (n− 1 + 2κ) = 2(N(r)− κ) +O(r)→ 0, as r → 0+.

In particular, for every ε > 0 there exist rε ∈ (0, 1) and a universal constant Cε > 0 (depending

also on u), such that for every 0 < r < rε one has

(10.2) H(r) ≥ Cεrn−1+2κ+ε.

Proof. By (4.2) we have
d

dr
log

H(r)

rn−1
= 2

N(r)

r
+O (1) ,

for a.e. 0 < r < 1. From this formula, and the fact that N(0+) = κ, we immediately obtain

(10.1). From (10.1) we see that for every ε > 0 there exists rε > 0 small such that

r
d

dr
logH(r) ≤ 2κ+ n− 1 + ε, 0 < r < rε.

Integrating from r to rε, this gives

H(rε)

H(r)
≤
(rε
r

)2κ+n−1+ε
,

from which we conclude, with Cε = H(rε)/r
n−1+2κ+ε
ε , that

H(r) ≥ Cεrn−1+2κ+ε. �

Lemma 10.2 (Nondegeneracy). Let u ∈ S, with 0 ∈ Σκ(u), and suppose that the hypothesis of

Theorem 3.3 be satisfied. Then there exist universal c > 0 and 0 < r0 < 1, possibly depending

on u, such that for 0 < r < r0 one has

(10.3) sup
Sr

|u(x)| ≥ crκ.

Proof. We argue by contradiction and suppose that (10.3) does not hold. Then, there exists a

sequence rj → 0 such that
sup
Srj

|u(x)|

rjκ
→ 0.

This implies, in particular,

(10.4)
drj
rjκ

=

(
1

rn−1+2κ
j

∫
Srj

u2µ

) 1
2

= o(1).

Consider now the sequence of Almgren scalings ũrj (x) =
u(rjx)
drj

, j ∈ N. From Lemma 6.9

and Proposition 6.12 above (see also (ii) of Theorem 8.4), we infer the existence of a nonzero
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polynomial qκ ∈ P+
κ (Rn), such that ũrj → qκ on C1,α

loc (Rn± ∪ Rn−1) as j → ∞. Corollary 9.4

implies that the limit Mκ(u, qκ, 0
+) exists. Therefore, we can use the sequence rj to compute

such limit, i.e.,

Mκ(u, qκ, 0
+) = lim

j→∞
Mκ(u, qκ, rj).

Definition 9.2 gives

Mκ(u, qκ, rj) =
1

rn−1+2κ
j

∫
Srj

(u− qκ)2µ =
1

rn−1+2κ
j

∫
Srj

(u2 − 2uqκ + q2
κ)µ.

Now, (10.4) gives

1

rn−1+2κ
j

∫
Srj

u2µ→ 0.

On the other hand, Lebesgue dominated convergence theorem gives

lim
j→∞

∫
S1

qκ(y)2µ(rjy) = µ(0)

∫
S1

q2
κ =

∫
S1

q2
κ <∞.

We infer from this that

0 ≤ 1

rn−1+2κ
j

∫
Srj

|uqκ|µ ≤
1

rn−1+2κ
j

(∫
Srj

u2µ

) 1
2
(∫

Srj

q2
κµ

) 1
2

=

(
1

rn−1+2κ
j

∫
Srj

u2µ

) 1
2 (∫

S1

qκ(y)2µ(rjy)

) 1
2

→ 0.

In conclusion, we have

(10.5) Mκ(u, qκ, 0
+) = lim

j→∞
Mκ(u, qκ, rj) = lim

j→∞

1

rn−1+2κ
j

∫
Srj

q2
κµ =

∫
S1

q2
κ.

By (10.5) and the homogeneity of qκ we infer that for every r ∈ (0, 1) we have

(10.6) Mκ(u, qκ, 0
+) =

1

rn−1+2κ

∫
Sr

q2
κ.

Since according to Corollary 9.4 the function r →Mκ(r) + C?r is monotone nondecreasing, we

have that
1

rn−1+2κ

∫
Sr

(u− qκ)2µ+ C?r ≥Mκ(u, qκ, 0
+) =

1

rn−1+2κ

∫
Sr

q2
κ,

where in the last equality we have used (10.6). Equivalently, we have

(10.7)
1

rn−1+2κ

∫
Sr

(u2 − 2uqκ)µ+
1

rn−1+2κ

∫
Sr

q2
κµ ≥ −C?r +

1

rn−1+2κ

∫
Sr

q2
κ.

Recalling that ũr(x) = u(rx)
dr

, (10.7) is equivalent to

1

r2κ

∫
S1

(d2
rũ

2
r − 2drr

κũrqκ)µ(rx) ≥ −C?r +

∫
S1

q2
κ(1− µ(rx)),

i.e.,

(10.8)

∫
S1

(
dr
rκ
ũ2
r − 2ũrqκ

)
µ(rx) ≥ −C? r

κ+1

dr
+
rκ

dr

∫
S1

q2
κ(1− µ(rx)).
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We claim that the right-hand side goes to 0 as r → 0. Indeed, by the definition (6.1) of dr

and (10.2) in Lemma 10.1, for any ε ∈ (0, 1) there exists rε, Cε > 0 such that for 0 < r < rε we

have,

r2κ+2

d2
r

=
r2κ+2+n−1

H(r)
≤ r2κ+n+1

Cεr2κ+n−1+ε
=
r2−ε

Cε
.

We infer that
rκ+1
j

drj
→ 0 as j →∞. By (ii) in Lemma 2.2 above we obtain for a universal constant

C > 0 ∣∣∣∣∫
S1

q2
κ(1− µ(rx))

∣∣∣∣ ≤ sup
x∈S1

|1− µ(rx)|
∫
S1

q2
κ ≤ Cr

∫
S1

q2
κ.

Therefore, we have as j →∞∣∣∣∣ rκjdrj
∫
S1

q2
κ(1− µ(rjx))

∣∣∣∣ ≤ C rκ+1
j

drj

∫
S1

q2
κ → 0.

In conclusion, if we let r = rj → 0 in (10.8) we obtain

−
∫
S1

q2
κ ≥ 0.

Since qκ 6≡ 0, we have thus reached a contradiction. �

With the nondegeneracy in hands we are finally ready to prove that, if zero is a singular point,

then the homogeneous blowups of u at zero cannot vanish indentically.

Lemma 10.3. Let u ∈ S, 0 ∈ Σκ(u), and suppose that the hypothesis of Theorem 3.3 be

satisfied. Then any homogeneous blowup u0 as in Lemma 6.9 is nonzero.

Proof. If u0 were zero, then there would exist j0 such that sup
B1

|urj | ≤ c
2 for all j > j0, where c

is the constant in Lemma 10.2. Therefore,

sup
Brj

|u| ≤
crκj
2
.

However, by Lemma 10.2 we have crκj ≤ sup
Brj

|u|, which gives a contradiction. �

Remark 10.4. The arguments of Lemmas 6.9, 8.5 and 10.3 and Proposition 6.12 immediately

show that if ur → u0 in C1,α
loc (Rn± ∪ Rn−1) for r = rj → 0+, then u0 ∈ P+

κ (Rn).

We are now ready to prove the uniqueness of the homogeneous blowups.

Theorem 10.5. (Uniqueness of the homogeneous blowup at singular points) Let u ∈ S and

assume that 0 ∈ Σκ(u). Suppose that the hypothesis of Theorem 3.3 be satisfied. Then there

exists a unique pκ ∈ P+
κ (Rn) such that the homogeneous scalings ur converge in C1,α

loc (Rn±∪Rn−1)

to pκ.

Proof. Lemmas 6.9, 8.5 and 10.3 guarantee the existence of such a polynomial, so we are left

with proving uniqueness. Let urj → u0 in C1,α
loc (Rn± ∪ Rn−1) for a certain sequence rj → 0+. By
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Remark 10.4 we know that u0 ∈ P+
κ (Rn). We then apply Corollary 9.4 to u and u0. Since the

limit Mκ(u, u0, 0
+) exists, it can be computed as

Mκ(u, u0, 0
+) = lim

rj→0+
Mκ(u, u0, rj) = lim

rj→0+

∫
S1

(urj − u0)2µ(rjy) = 0,

where the second to the last equality holds because, thanks to the homogeneity of u0, we have

Mκ(u, u0, r) =
1

rn−1+2κ

∫
Sr

(u− u0)2µ =
1

r2κ

∫
S1

(u(ry)− u0(ry))2µ(ry)

=

∫
S1

(ur − u0)2µ(ry).

Now, since Mκ(u, u0, 0
+) = 0, we obtain for any r → 0+, and not just for the above sequence

rj → 0+, that

Mκ(u, u0, r) =

∫
S1

(ur − u0)2µ(ry) → 0.

Therefore, if u′0 is a limit of ur over another sequence r = r′j → 0, then∫
S1

(u0 − u′0)2 ≤ 2λ−1

∫
S1

(u0 − ur)2µ(ry) + 2λ−1

∫
S1

(ur − u′0)2µ(ry)→ 0.

This implies that u0 = u′0 in S1. Since both u0 and u′0 are homogeneous of degree κ, they must

coincide in Rn. �

Lemma 10.6. Let u ∈ S. Then the set Σκ is of type Fσ, i.e., it is a union of countably many

closed sets.

Proof. The proof follows that of Lemma 1.5.3 in [GP]. Let

Ej =
{
x0 ∈ Σκ(u) ∩B1−1/j | ρκ/j ≤ sup

Sρ

|ux0(x)| ≤ jρκ, for 0 < ρ < λ1/2(1− |x0|)
}
.

By Lemmas 4.2 and 10.2, Σκ(u) = ∪∞j=1Ej , so we only need to prove that Ej is closed. Let

x0 ∈ Ej . Then clearly x0 ∈ B1−1/j and

(10.9)
1

j
ρκ ≤ sup

Sρ

|ux0(x)| ≤ jρκ, for 0 < ρ < λ1/2(1− |x0|),

therefore it suffices to prove that x0 ∈ Σκ(u). By Theorem 8.4, since κ is even, it suffices to

show that ÑLx0
(u, 0+) = κ. By the upper semicontinuity of the function x 7→ ÑLx(u, 0+), we

have that ÑLx0
(u, 0+) ≥ κ. If we had ÑLx0

(u, 0+) = ` > κ, then by Lemma 4.2 we would

have |ux0(x)| ≤ C1|x|` in a small enough ball, contradicting (10.9). Therefore, ÑLx0
(0+, u) = κ,

proving the result. �

Theorem 10.7 (Continuous dependence of the blowups). Let u ∈ S. Given x0 ∈ Σκ(u), with

κ > 3
2 , denote by px0κ the homogeneous blowup of u at x0 as in Theorem 10.5, so that

u(x) = px0κ (A−1/2(x0)(x− x0)) + o(|A−1/2(x0)(x− x0)|κ).

Then the mapping x0 → px0κ from Σκ(u) to P+
κ (Rn) is continuous, where P+

κ (Rn) is like in

Definition 8.3. Moreover, for any compact K ⊂ Σκ(u)∩B1, there exists a modulus of continuity

σK , with σK(0+) = 0, such that

(10.10) |u(x)− px0κ (A−1/2(x0)(x− x0))| ≤ σK(|A−1/2(x0)(x− x0)|)|A−1/2(x0)(x− x0)|κ,
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for any x0 ∈ K.

Proof. The proof follows the ideas of Theorem 1.5.5 in [GP] and is included for clarity and com-

pleteness. P+
κ (Rn) is a convex subset of the finite-dimensional vector space of all κ-homogeneous

polynomials, therefore all norms are equivalent. We will endow such space with the norm of

L2(S1).

Given x0 ∈ Σκ(u) and ε > 0 small enough, there exists rε = rε(x0) > 0 such that

Mx0
κ (u, px0κ , rε) := Mκ(ux0 , p

x0
κ , rε) =

1

rn−1+2κ
ε

∫
Srε

(ux0 − px0κ )2µ < ε,

where we recall that ux0(x) = u(x0 +A1/2(x0)x). This implies that there exists δε = δε(x0) > 0

such that if z0 ∈ Σκ(u) ∩Bδε(x0), then

M z0
κ (u, px0κ , rε) =

1

rn−1+2κ
ε

∫
Srε

(uz0 − px0κ )2µ < 2ε.

Since M z0
κ (u, px0κ , ·) + C?r is monotone nondecreasing, we conclude that for rε small enough

M z0
κ (u, px0κ , r) < 3ε, 0 < r < rε.

Letting r → 0+, we obtain

M z0
κ (u, px0κ , 0

+) =

∫
S1

(pz0κ − px0κ )2 ≤ 3ε,

which concludes the first part of the theorem. To prove the second part, notice that for |z0−x0| <
δε and 0 < r < rε,

‖uz0 − pz0κ ‖L2(Sr) ≤ ‖uz0 − p
x0
κ ‖L2(Sr) + ‖px0κ − pz0κ ‖L2(Sr)

≤ 2(3ε)1/2r
n−1
2

+κλ−1/2.

Integrating in r, this also gives an estimate for solid integrals

‖uz0 − pz0κ ‖L2(B2r) ≤ Cε
1/2r

n
2

+κ.

To proceed, we now notice that

Lz0p
z0
κ = Lz0p

z0
κ −∆pz0κ = div((Az0 − I)∇pz0κ ) = ∇Az0∇pz0κ + (Az0 − I)D2pz0κ

and hence

|Lz0pz0κ | ≤ Crκ−1 in B2r.

This then implies (by using the Signorini boundary conditions)

|Lz0(uz0 − pz0κ )±| ≤ Crκ−1 in B2r,

and consequently that

‖uz0 − pz0κ ‖L∞(Br) ≤ Cr
−n/2‖uz0 − pz0κ ‖L2(B2r) + Crκ+1

≤ Cε1/2rκ + Crκ+1,

by the interior L∞-L2 estimates. Rescaling, this gives

(10.11) ‖uz0,r − pz0κ ‖L∞(B1) ≤ C(ε1/2 + r) ≤ Cε,

for r < rε small, and Cε → 0 as ε → 0, where we recall that uz0,r(x) := uz0(rx)/rκ. Let now

K ⊂ Σκ(u) ∩ B1 be compact. After covering it with finitely many balls Bδε(xi0)(x
i
0) for some
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xi0 ∈ K, i = 1, . . . , N , we conclude that (10.11) holds for all z0 ∈ K if r < rKε := min{rε(xi0) |
i = 1, . . . , N}. �

11. Structure of the singular set

We are now ready to prove our main result. We need the following definition.

Definition 11.1 (Dimension at the singular point). Given a singular point x0 ∈ Σκ(u) we define

the dimension of Σκ(u) at x0 to be

dx0κ := dim
{
ξ ∈ Rn−1 | 〈ξ,∇x′px0κ (x′, 0)〉 = 0, ∀x′ ∈ Rn−1

}
.

Notice that, since px0κ 6≡ 0 on Rn−1 × {0} (by the Cauchy-Kovalevskaya theorem), we have

0 ≤ dx0κ ≤ n− 2. Therefore, given d ∈ {0, . . . , n− 2}, we define

Σd
κ(u) := {x0 ∈ Σκ(u) | dx0κ = d}.

Theorem 11.2 (Structure of the singular set). Let u ∈ S. Then Γκ(u) = Σκ(u) for k = 2m,

m ∈ N. Moreover, every set Σd
κ(u), d ∈ {0, . . . , n − 2}, is contained in a countable union of

d-dimensional C1 manifolds.

Proof. The claim that Γκ(u) = Σκ(u) for k = 2m, m ∈ N, was proved in Theorem 8.4. The proof

of the structure of Σd
κ(u) is based on Whitney’s extension theorem, see [W], and the implicit

function theorem, and follows the proof of Theorem 1.3.8 in [GP] with appropriate modifications.

We include it here for completeness.

Step 1: Whitney’s extension. Recall the definition of the sets Ej introduced in Lemma 10.6:

K = Ej = {x0 ∈ Σκ(u) ∩B1−1/j |
1

j
ρκ ≤ sup

Sρ

|ux0(x)| ≤ jρκ for 0 < ρ < λ1/2(1− |x0|)}.

We have already proved that Γκ(u) =
⋃∞
j=1Ej , where each Ej is compact.

If px0κ denotes the unique homogeneous blowup of u at x0, write

px0κ (x) =
∑
|α|=κ

aα(x)

α!
xα.

By Theorem 10.7, the coefficients aα are continuous on Σκ(u). Furthermore, combining (10.10)

with the fact that u(x) = 0 on Σκ(u), we obtain

|px0κ (A−1/2(x0)(x− x0))| ≤ σ(|A−1/2(x0)(x− x0)|)|A−1/2(x0)(x− x0)|κ, for x, x0 ∈ K,

where σ = σK . For any multi-index α with |α| ≤ κ, define, for x ∈ Σκ(u),

fα(x) =

{
0, |α| ≤ κ

aα(x), |α| = κ.

We will prove now a compatibility condition which will allow us to apply Whitney’s extension

theorem.

Lemma 11.3. For any x0, x ∈ K,

(11.1) fα(x) =
∑

|β|≤κ−|α|

fα+β(x0)

β!
(x− x0)β +Rα(x, x0),
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where for some modulus of continuity σα = σKα ,

(11.2) |Rα(x, x0)| ≤ σα(|x− x0|)|x− x0|κ−|α|.

Proof. (1) Consider the case |α| = κ. Then fα(x) = aα(x) and we need to prove thatRα(x, x0) :=

aα(x)−aα(x0) is such that |Rα(x, x0)| ≤ σα(|x−x0|). Since x 7→ aα(x) is continuous on K, this

claim holds.

(2) For 0 ≤ |α| < κ, we have fα(x) = 0, while the right-hand side of (11.1) is∑
|α+β|=κ

fα+β(x0)

β!
(x− x0)β +Rα(x, x0) =

∑
|γ|=κ,γ>α

aγ(x0)

(γ − α)!
(x− x0)γ−α +Rα(x, x0)

and it suffices to prove that

Rα(x, x0) := −
∑

|γ|=κ,γ>α

aγ(x0)

(γ − α)!
(x− x0)γ−α = −∂αpx0κ (x− x0)

satisfies (11.2). Assume by contradiction that there exists no modulus of continuity σα such

that (11.2) is satisfied for every x0, x ∈ K. Then there exists δ > 0 and sequences xi0, x
i ∈ K

such that |xi0 − xi| := ρi → 0 and

(11.3)

∣∣∣∣∣∣
∑

|γ|=κ,γ>α

aγ(xi0)

(γ − α)!
(xi − xi0)γ−α

∣∣∣∣∣∣ ≥ δ|xi − xi0|κ−|α|.
Consider the scalings

wi(x) =
u(xi0 + ρiA

1/2(xi0)x)

ρκi
, ξi := (xi − xi0)/ρi.

Without loss of generality, we may assume that xi0 → x0 ∈ K and ξi → ξ0 ∈ S1. By Theo-

rem 10.7,

∣∣∣wi(x)− px
i
0
κ (x)

∣∣∣ =
∣∣∣u(xi0 + ρiA

1/2(xi0)x)

ρκi
− px

i
0
κ (x)

∣∣∣ =
1

ρκi

∣∣∣u(xi0 + ρiA
1/2(xi0)x)− px

i
0
κ (ρix)

∣∣∣
≤ 1

ρκi
σK(|ρix|)|ρix|κ = σK(|ρix|)|x|κ.

This implies that wi converges locally uniformly in Rn to px0κ , as

|wi(x)− px0κ (x)| ≤ |wi(x)− px
i
0
κ (x)|+ |px

i
0
κ (x)− px0κ (x)|

≤ σK(|ρix|)|x|κ + |px
i
0
κ (x)− px0κ (x)|,

and the map x0 7→ px0κ from Σκ(u) to Pκ is continuous.

Now notice that since xi ∈ K = Ej , then

1

j
ρκ ≤ sup

Sρ

|uxi(x)| ≤ jρκ, for 0 < ρ < λ1/2(1− |xi|),

which can be rewritten as
1

j
ρκ ≤ sup

|A−1/2(xi)(A1/2(xi0)y−ξi)|=ρ
|wi(y)| ≤ jρκ, for 0 < ρρi < λ1/2(1− |xi|).
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Passing to the limit, we obtain

1

j
ρκ ≤ sup

Sρ(ξ0)
|px0κ (x)| ≤ jρκ, 0 < ρ <∞.

This implies that ξ0 ∈ Σκ(px0κ ) and in particular that

(11.4) ∂βpx0κ (ξ0) = 0 for all |β| < κ.

However, dividing both parts of (11.3) by ρ
κ−|α|
i and passing to the limit, we obtain

∂αpx0κ (ξ0) =
∑

γ=κ,γ>α

aγ(x0)

(γ − α)!
ξγ−α0 ≥ δ > 0,

contradicting (11.4) for β = α. This completes the proof. �

The lemma above allows us to apply Whitney’s extension theorem, concluding that there

exists F ∈ Cκ(Rn) such that

∂αF = fα, ∀|α| ≤ κ.
Step 2: Implicit function theorem. Let x0 ∈ Σd

κ(u) ∩ Ej . By definition, this means that

d = dim{ξ ∈ Rn−1 | 〈ξ,∇x′px0κ 〉 ≡ 0 on Rn−1}.

We note that the equivalent definition of d is given by

d = dim{ξ ∈ Rn−1 | 〈ξ,∇x′∂β
′

x′ p
x0
κ 〉 = 0, for any |β| = κ− 1}.

Therefore, there exist n− 1− d multi-indices β′i of order |β′i| = κ− 1, i = 1, . . . , n− 1− d such

that

vi = ∇x′∂
β′i
x′F (x0) = ∇x′∂

β′i
x′ p

x0
κ

are linearly independent. On the other hand,

Σd
κ(u) ∩ Ej ⊂

n−1−d⋂
i=1

{∂β
′
i
x′F = 0}.

Hence the implicit function theorem implies that Σd
κ(u) ∩ Ej is contained in a d-dimensional

manifold in a neighborhood of x0. Since Σκ(u) =
⋃∞
j=1Ej , the theorem holds. �
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